Mbsm.pro, Table, starting, capacitors, compressor

table of single-phase start and run capacitors

▷ Starting and Running Capacitors Table

Do you need to replace a start or run  capacitor   and you don’t know which one the equipment has? In this post we will give you some tables of start and run capacitors so that you can access it when you need it.

The topic regarding the calculation of capacitors for single-phase compressors  is of great importance, because whoever is repairing needs to know when it is in poor condition and also what the replacement of the damaged part will be.

The technician who manipulates the equipment has to know that the new capacitor that he has bought to replace the old one must exactly meet the working voltage or greater than that of the original.

It is also important to highlight in this article that the compressor voltage has almost no relation to the capacitor voltage.

If you do not have the original capacitor data, you can approximate it using the following capacitor values ​​for single-phase motors that we present below.

They can be used as a guide or reference for selecting,  replacing capacitors when the exact values ​​are unknown.

Table of starting capacitors
for single-phase motors

Table of Start and Run Capacitors
for Single Phase Capacitors

In this table, which is very similar to the previous one, I attach capacitor values ​​for single-phase motors.

both working and starting capacitors, this way you will have the most user-friendly information in a single image

Capacitor Table for
Three-Phase Electric Motors

As a general rule, low-power three-phase electric motors have an operating voltage of 220 VD / 380 VY, but we must always make sure .

To do this, it is best to look at the motor’s nameplate. Where the voltages and connection will be indicated to know the type of  Capacitor they use.

Fan run capacitor table

If you need to change a running or permanent fan capacitor, this table attached below can guide you to resolve the fault of the equipment you are repairing:

Understanding Starting Capacitors for Compressors: A Comprehensive Guide

Introduction
Starting capacitors play a crucial role in the efficient operation of compressors, especially in single-phase motors. They help generate the necessary starting torque and ensure smooth operation. This guide provides a detailed overview of starting capacitors, their importance, and how to select the right one for your compressor. We’ll also explore key specifications and troubleshooting tips to ensure optimal performance.


1. What is a Starting Capacitor?

A starting capacitor is an electrical component used in single-phase motors to create a phase shift, which generates the torque needed to start the motor. Without a starting capacitor, single-phase motors would struggle to start due to insufficient torque.


2. Key Functions of Starting Capacitors

  • Generate Starting Torque: Provides the necessary torque to start the compressor motor.
  • Phase Shift Creation: Creates a 90-degree phase shift to simulate a second phase in single-phase motors.
  • Smooth Operation: Ensures the motor starts smoothly without excessive current draw.

3. Table: Starting Capacitor Specifications for Compressors

Compressor Model Power (W) Voltage (V) Capacitance (µF) Max. Current (A) Release Current (A)
BSA15 150 230 10 1.55 1.6
BSA10 250 230 15 2.43 2.07
B10A19 300 230 20 3.0 2.56
B12A12 350 230 25 3.5 2.95
B16A13 500 230 30 5.15 4.85
B9A11 750 230 35 7.0 5.9

4. How to Calculate the Right Capacitor for Your Compressor

The capacitance of a starting capacitor is critical for optimal performance. Here’s a simple formula to calculate the required capacitance:

Formula:

C=P×1062πfV2cos⁡(ϕ)C=2πfV2cos(ϕ)P×106​

Where:

  • CC = Capacitance (in microfarads, µF)
  • PP = Motor power (in watts, W)
  • ff = Frequency (in hertz, Hz, typically 50 or 60 Hz)
  • VV = Voltage (in volts, V)
  • cos⁡(ϕ)cos(ϕ) = Power factor (typically 0.85 for motors)

Example Calculation:
For a motor with:

  • Power (PP) = 150 W
  • Voltage (VV) = 230 V
  • Frequency (ff) = 50 Hz
  • Power factor (cos⁡(ϕ)cos(ϕ)) = 0.85

C=150×1062π50×2302×0.85≈10.61 μFC=2π×50×2302×0.85150×106​≈10.61μF

In this case, a 10 µF capacitor would be ideal.


5. Common Issues with Starting Capacitors

  • Failed Capacitor: A faulty capacitor can prevent the motor from starting or cause it to overheat.
  • Incorrect Capacitance: Using a capacitor with the wrong capacitance can lead to insufficient torque or excessive current draw.
  • Overheating: Poor ventilation or excessive load can cause the capacitor to overheat and fail.

6. Troubleshooting Tips

  1. Check Continuity: Use a multimeter to test the capacitor for continuity. A failed capacitor will show no continuity.
  2. Measure Capacitance: Use a capacitance meter to ensure the capacitor’s value matches the required specifications.
  3. Inspect for Physical Damage: Look for bulging, leaks, or burn marks on the capacitor, which indicate failure.
  4. Test Under Load: Ensure the compressor starts smoothly and does not draw excessive current during startup.

7. Advantages of Using the Right Starting Capacitor

  • Improved Motor Lifespan: Reduces stress on the motor during startup.
  • Energy Efficiency: Minimizes power consumption during operation.
  • Reliable Performance: Ensures consistent and reliable compressor operation.

8. Conclusion

Selecting the right starting capacitor for your compressor is essential for ensuring efficient and reliable operation. By understanding the specifications, calculating the correct capacitance, and performing regular maintenance, you can extend the lifespan of your compressor and avoid costly repairs.




PREFIXES , CONVERSION ,FACTORS

Prefixes

Units can be used as such or in multiples or fractions of ten:

PREFIX

POWER OF TEN

T

tera

1012

G

giga

109

M

mega

106

k

kilo

103

h

hecto

102

da

deca

101

d

deci

10-1

c

centi

10-2

m

milli

10-3

m

micro

10-6

n

nano

10-9

P

pico

10-12

f

femto

10-15

a

atto

10-18

1 m = 100 cm = 1000 mm
1 m2 = 10 000 cm2 = 106 mm2
1 m3 = 106 cm3 = 109 mm3
1 Mg m-3 = 103 kg m-3 = 1 g cm-3
1 kPa = 10 mbar
1 joule = 0.2388 cal
1 watt = 1 J s-1 = 0.8598 kcal h-1
1 W m-2 = 0.8598 kcal m-2 h-1
1 W m-2 = 1.433 × 10-3 cal cm-2 min-1
1 Hp = 745.7 W
1 W = 0.001431 Hp
Water flow (m3 s-1) = 0.55 × Pump power (W)/Pressure (kPa)
Water flow (litre s-1) = 5.43 × Pump power (kilowatts)/pressure (bars)

Brake Horsepower is the horsepower for an electric motor. Do not use for fuel-powered engines.

Conversion factors

Temperature

Standard unit: degree Celsius (°C)

degree Fahrenheit (°F) °C = (°F-32) 5/9
kelvin(s) (K) K = °C +273.15

Pressure (air pressure, vapour pressure)

Standard unit: kilopascal (kPa)

millibar (mbar) 1 mbar = 0.1 kPa
Bar 1 bar = 100 kPa
centimetre of water (cm) 1 cm of water = 0.09807 kPa
millimetre of mercury (mm Hg) 1 mm hg = 0.1333 kPa
atmosphere (atm) 1 atm =101.325 kPa
pound per square inch (psi) 1 psi = 6.896 kPa

Wind speed

Standard unit: metre per second (m s-1)

kilometre per day (km day-1) 1 km day-1 = 0.01157 m s-1
nautical mile/hour (knot) 1 knot = 0.5144 m s-1
foot per second (ft s-1) 1 ft s-1 = 0.3048 m s-1

Radiation

Standard unit: megajoule per square metre and per day (MJ m2 day-1) or as equivalent evaporation in mm per day (mm day-1)

equivalent evaporation (mm/day) 1 mm day-1 = 2.45 MJ m-2 day-1
joule per cm2 per day (J cm-2 day-1) 1 J cm-2 day-1 = 0.01 MJ m-2 day-1
calorie per cm2 per day (cal cm-2 day-1) 1 cal = 4.1868 J = 4.1868 10-6 MJ
1 cal cm-2 day-1 = 4.1868 10-2 MJ
m-2 day-1
watt per m2 (W m-2) 1 W = 1 J s-1
1 W m-2 = 0.0864 MJ m-2 day-1

Physical properties

Properties of Water

T

rw

l

°C

Mg m-3

kJ mol-1

0

0.99987

45.0

4

1.00000

44.8

10

0.99973

44.6

20

0.99823

44.1

30

0.99568

43.7

40

0.99225

43.4

T = temperature, rw = density of water and l = latent heat of vaporization

Properties of gases at Pb = 101.3 kPa barometric pressure

T

r

°C

mol m-3

0

44.6

5

43.8

10

43.0

15

42.3

20

41.6

25

40.9

30

40.2

35

39.5

40

38.9

T= temperature and r = density

Black body emittance (W m-2) as a function of subzero temperature (°C)

°C

0.0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

-14

256

255

255

255

254

254

253

253

253

252

-13

260

259

259

258

258

258

257

257

257

256

-12

264

263

263

262

262

262

261

261

260

260

-11

268

267

267

267

266

266

265

265

265

264

-10

272

271

271

271

270

270

269

269

269

268

-9

276

276

275

275

274

274

274

273

273

272

-8

280

280

279

279

279

278

278

277

277

276

-7

284

284

284

283

283

282

282

282

281

281

-6

289

288

288

287

287

287

286

286

285

285

-5

293

293

292

292

291

291

291

290

290

289

-4

298

297

297

296

296

295

295

294

294

294

-3

302

302

301

301

300

300

299

299

298

298

-2

306

306

306

305

305

304

304

303

303

302

-1

311

311

310

310

309

309

308

308

307

307

0

316

315

315

314

314

313

313

312

312

311




Mbsm.pro , جدول بأنواع الزيوت المناسبة لوسائط وضواغط التبريد و اللذوجة المناسبة لكل نوع من الضواغط , table of the types of oils suitable for the appropriate refrigeration and liquefied media and compressors for each type of compressor

table of the types of oils suitable for the appropriate refrigeration and liquefied media and compressors for each type of compressor

جدول بأنواع الزيوت المناسبة لوسائط وضواغط التبريد و اللذوجة المناسبة لكل نوع من الضواغط 
PAO (Polyalphaolefi n) زيت بولى ألفا أوليفن 
MN (Mineral Naphthenic) زيت مينرال 
AB (Alkylbenzene)زيت الكيل بنزين 
POE (Polyol Ester) زيت بولي استر
PG (Polyglycol) زيت بولي جليكول

Table of oil types suitable for appropriate refrigeration and liquefied media and compressors for each type of compressor  

PAO (Polyalphaolefi n) Polyamphalene oil  

MN (Mineral Naphthenic) Oil  

AB (Alkylbenzene) Petrol oil  

POE (Polyol Ester) Polyethylene oil 

PG (Polyglycol) Polyglycol